

FM Transmitter IC with Stereo Modulation

Overview

The LV2282VA is an FM Transmitter IC. MPX block makes stereo modulated, composite signal from L and R sound inputs. RF VCO include FM modulation function. Audio AGC function keeps FM modulation well regulated. PLL synthesizer determines RF output frequency with I²C or 3-bit parallel control (selectable).

Application

- Portable Memory Player
- Portable HDD Player
- Wireless Headphone

Features

- (Audio) AGC amplifier
- (MPX) Pilot tone system stereo modulation, audio attenuation
- (RF) VCO, driver amplifier
- (PLL) 70 to 110MHz, 100kHz step available, I²C bus control, 3-bit parallel control

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max	Pin 4, 11, 15	5.0	V
Maximum input voltage	V _{IN} max		V _{CC} +0.3	V
Minimum input voltage	V _{IN} min		-0.3	V
Allowable power dissipation	Pd max	Ta \leq 85°C, Mounted on a specified board*	500	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

* Specified board : 114.3mm×76.1mm×1.6mm, glass epoxy circuit board.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

LV2282VA

Recommended Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}	Pin 4, 11, 15	3.3	V
Operating supply voltage range	V _{CC} op	Pin 4, 11, 15	2.6 to 4.0	V

AC Characteristics Ta = 25°C, V_{CC} = 3.3V, I²C bits = Default state, L and R input = 1kHz, 20mVrms,

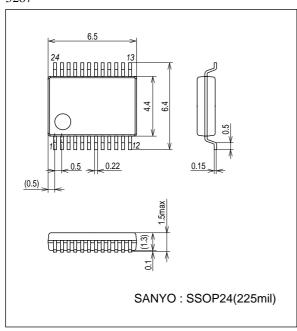
unless otherwise noted

Decemeter	Symbol	Conditions		Ratings		Unit
Parameter	Symbol Conditions		min	typ	max	Unit
Circuit current	ICC	No input signal, Pin 4, 11, 12, 15 current		10	15	mA
Standby current	ISTB	No input signal, I ² C bit "STB" = "1",			10	μA
		Pin 4, 11, 12, 15 current				

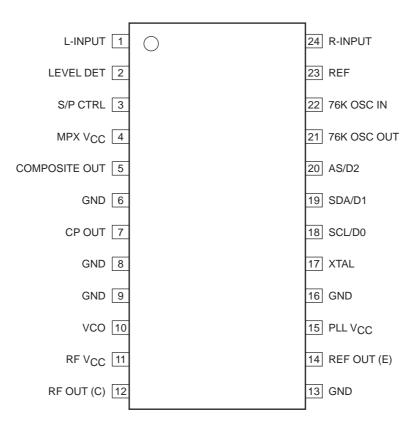
Audio and MPX Blocks

Dementer	Querra ha a l	Quaditiona		Ratings			
Parameter	Symbol	Symbol Conditions		typ	max	Unit	
Maximum audio input	VA max	Pin 1 and 24 input			100	mVrms	
Audio input frequency	FAF	Pin 1 and 24 input	20		15k	Hz	
Channel separation	SEP	Pin 5, composite output, $L \rightarrow R$, $R \rightarrow L$	20	30		dB	
Channel balance	СВ	Pin 5, composite output	-2	0	2	dB	
Total harmonic distortion	THD	Pin 5, composite output		0.5	1.5	%	
Maximum gain	GMAX	Pin 5/Pin 1 and 24	6	9	12	dB	
AGC gain range	GR	Pin 5/Pin 1 and 24	9	11	13	dB	
Pilot tone output level	PMOD	I ² C bits "PA1/PA0" ="01"	2	4	6	mVrms	
Composite output level	MPXOUT		19	30	48	mVrms	
Audio attenuation	ATT	I ² C bit "ATT" = "1"	25			dB	
Crystal oscillator frequency (1)	FXOSC (1)	Pin 21 and Pin 22		76		kHz	

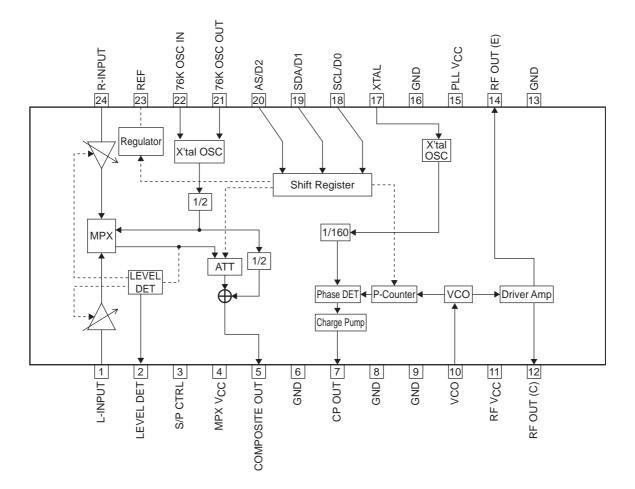
RF Blocks

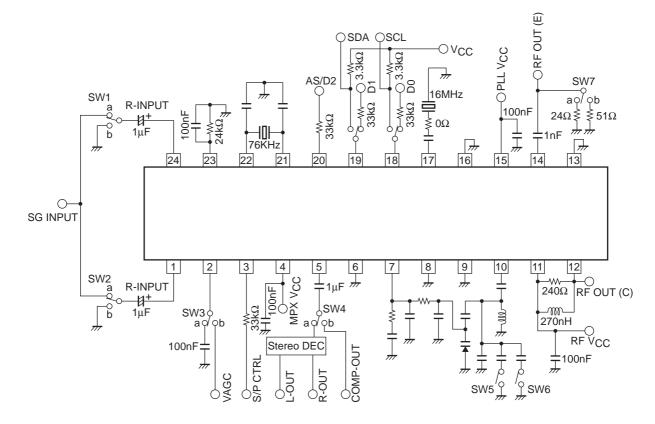

Parameter	Symbol	Conditions		Ratings		Unit
Falanielei	Symbol Conditions		min	typ	max	Unit
RF output (1)	RFOUT (1)	f = 90MHz, Pin 12 output	109	112	115	dBμV
RF output (2)	RFOUT (2)	f = 90MHz, Pin 14 output	97	100	103	dBμV
RF frequency	FRF	100kHz step	70		110	MHz

PLL Blocks


Parameter	Sumbol	Symbol Conditions		Ratings			
Parameter	Symbol	Conditions	min	typ	max	Unit	
I ² C input "High" voltage	VH		0.8V _{CC}		V _{CC} +0.3	V	
I ² C input "Low" voltage	VL		-0.3		0.2V _{CC}	V	
RF input frequency 1	FPLL1	With I ² C 11bit	70		110	MHz	
		Step = 100kHz, See table 1					
RF input frequency 2	FPLL2	With 3bit Parallel	88.1		90.9	MHz	
		Step = 400kHz, See table 3					
Crystal oscillator frequency (2)	FXOSC (2)	Pin 17		16		MHz	
CP output current	ICP	CP voltage = 1.65V		30		μA	

Package Dimensions


unit : mm (typ) 3287


Pin Assignment

Block Diagram

AC Testing Circuit

Pin De	escription			
		DC Voltage	Description	
Pin No.	Pin Name	(V)	Description	Equivalent Circuit
1	L-INPUT	2.8	Left channel input. AC coupling capacitance is required.	$\begin{array}{c} 4 \\ 10k\Omega \\ \hline \\ (24) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
2	LEVEL DET	-	For AGC time constant. Capacitance is required.	
3	S/P CTRL	-	Connect to GND for serial (I ² C) data input. Connect to V_{CC} for parallel data input.	(4) (3) (3) (4) (3) (4) (5) (5) (5) (6) (4) (5) (5) (5) (5) (6) (5) (6)
4	MPX V _{CC}	3.3	V _{CC} for Audio frequency and MPX Blocks.	
5	OUT	1.7	Stereo modulated output.	
6	GND	0		
7	CP OUT	-	Charge pump current output.	(1) (3) (3) (3) (3) (3) (3) (3) (4) (4) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7

No.A0973-5/10

Continue	from preceding pag	ge.		
Pin No.	Pin Name	DC Voltage (V)	Description	Equivalent Circuit
8	GND	0		
9	GND	0		
10	VCO	2.8	Transistor BASE terminal for Colpitz oscillator.	
11	RF V _{CC}	3.3	V _{CC} for RF blocks.	
12	RF OUT (C)	3.3	Collector output.	
13	GND	0		
14	RF OUT (E)	2.0	Emitter follower output.	See Pin 12.
15	PLL V _{CC}	3.3	V _{CC} for digital blocks.	
16	GND	0		
17	XTAL	1.5	16MHz Crystal is needed for PLL reference frequency.	
18	SCL/D0	-	I ² C clock input / Parallel LSB input.	(15) (18) (18) (16)
19	SDA/D1	-	I ² C data input / Parallel input.	(15) (19) (19) (16) (16) (Continued on next page.

Continued	from preceding pag			
Pin No.	Pin Name	DC Voltage (V)	Description	Equivalent Circuit
20	AS/D2	-	I ² C address selection (1bit)/Parallel MSB input.	$\begin{array}{c} 15 \\ \hline \\ 20 \\ \hline \\ 16 \\ \hline \end{array} \\ \hline \\$
21	76K OSC OUT	0.8	For stereo modulator pilot signal and sub carrier. 76kHz crystal should be connected between Pin 21 and Pin 22	$\begin{array}{c} 15 \\ \hline \\ 21 \\ \hline \\ \\ 22 \\ \hline \\ \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
22	76K OSC IN	0.7	See Pin 21	See Pin 21
23	REF	1.2	AC decoupling capacitance is required. External 24kΩ makes internal regulated current.	
24	R-INPUT	2.8	Right channel audio input. AC coupling capacitance is required.	See Pin 1

PLL Control by I²C Bus

The PLL block requires 3 bytes of I²C input as indicated below.

Nama			Bit							
Name	Byte	MSB (1)							LSB	ACK
Address Byte	1	AD7	AD6	AD5	AD4	AD3	AD2	AS	R/W	٥
		1	1	0	1	0	0	1/0	0	A
Control Byte 1	2	P10	P9	P8	P7	P6	P5	P4	P3	٥
		0	1	1	0	1	1	1	0	A
Control Byte 2	3	P2	P1	P0	PA1	PA0	TS	STB	ATT	٥
		0	0	1	0	1	0	0	0	A

Table 1. I²C Bus Write Data Format

(1) : MSB is transmitted first.

Table 2.	I ² C	Write	Mode	Descri	ption
----------	------------------	-------	------	--------	-------

Bit	Name	Description
AD7 – AD2	Address bit	LV2282VA requires address bits.
AS	Address Select	AS bit is decided by Pin 20.
		Connecting to $V_{CC} = "1"$, to GND = "0"
R/W	Read/Write	"0" for Write mode (Write mode only).
А	Acknowledge	
P10 – P0	Programmable counter	11 bit Programmable counter. P0 = LSB, P10 = MSB.
		RF Frequency = (P10x2 ¹⁰ + P9x2 ⁹ + P1x2 ¹ + P0) x 100kHz
		Default state = "01101110001"
PA1 – PA0	Pilot Adjust	2 bit Pilot tone output level adjust. "PA1 PA0" is set "00" for no pilot tone (monaural mode), "01", for
		minimum output, "11" for maximum output.
		Default state = "01"
TS	Test Mode	For IC Testing. Set "0" for normal operation.
		TS for Counter testing. Default state = "0"
STB	Standby	"1" for Standby mode. Default state = "0" for normal operation.
ATT	Audio attenuator	"1" for Audio attenuation. Default state = "0" for normal operation.

PLL Control with Parallel Data Input

When Pin 3 S/P CTRL, is connected to V_{CC}, PLL blocks requires 3 bit parallel data input as shown below. In parallel data input mode, I²C controllable function in Table 2 is always set as (PA1, PA0, TS, STB, ATT) = (0, 1, 0, 0, 0).

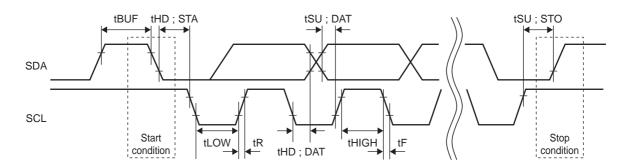
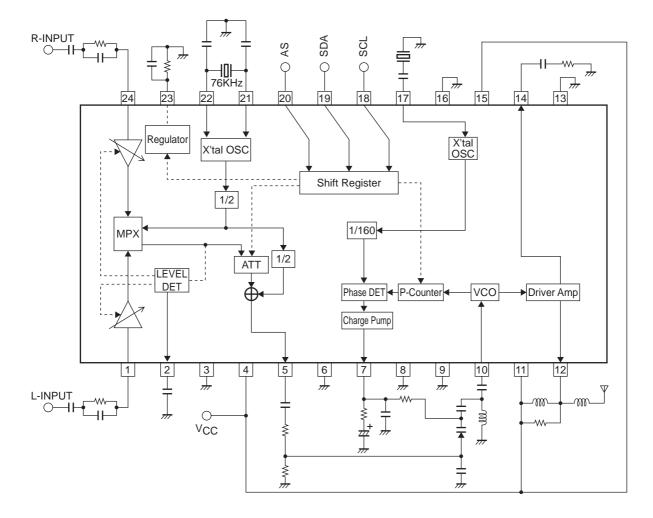

Table 5. Farance 5 bit Data Format									
State	D2 (Pin 20)	D1 (Pin 19)	D1 (Pin 18)	Frequency (MHz)					
0	0	0	0	88.1					
1	0	0	1	88.5					
2	0	1	0	88.9					
3	0	1	1	89.3					
4	1	0	0	89.7					
5	1	0	1	90.1					
6	1	1	0	90.5					
7	1	1	1	90.9					

Table 3. Parallel 3 bit Data Format

I²C Bus Operation

Time chart


Table 4. Timing specification

Parameter	Symbol	Ratings			Unit
Parameter	Symbol	min	typ	max	Unit
SCL clock frequency	fSCL			100	kHz
Bus free time between a STOP and START condition	tBUF	4.7			μS
Hold time START condition	tHD ; STA	4.0			μs
LOW period of the SCL clock	tLOW	4.7			μS
HIGH period of the SCL clock	tHIGH	4.0			μS
Data hold time	tHD ; DAT	0.0			μs
Data set-up time	tSU ; DAT	250			ns
Rise time of both SDA and SCL signals	tR			1000	ns
Fall time of both SDA and SCL signals	tF			300	ns
Set-up time for STOP condition	tSU ; STO	4.0			μS

I²C Bus AC Characteristics : Temp=25°C V_{CC} = 3.3V

Note : I 2 C Bus is a registered trademark of the Philips Co..

Application Circuit

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of December, 2007. Specifications and information herein are subject to change without notice.